Measurement & Control Instrument

MCK-S型 高精度智能显示控制仪 图 圖 閱 圓 哥

- 性能稳定、可靠;测量准确、直观
- 与各种具有线性输出特性的传感器配套
- 多种报警方式选择、继电器控制输出
- 手动清零、峰值记忆

- 串行 RS-485 双向通信
- 外型 80H×160L×135D 标准插装机箱
- 交流 220VAC、50Hz 电源
- 模拟量输出(4-20mA, 0-5V等)

MCK-S 系列智能显示控制仪

感谢您使用本公司的 MCK-S 系列智能显示控制仪,为了更好发挥本产品的功能, 以免因操作失误造成不必要的损失,在您使用本产品时,请务必阅读本说明书。本产 品适用与各种具有线性输出特性的传感器或其他测量设备,作为称重、拉力、张力、 压力、位移、温度、湿度等的测量显示、报警、控制、通讯、特殊值的记忆等。

一、技术参数

- 1. 测量功能: 与各种传感器配套测量
- 2. 输入方式: 模拟电流、电压或频率信号
- 3. 精度: ±0.03%(FS),(23℃±5℃)
- 4. 采样速度: 25^{~100} 次/秒
- 5. 最大显示: -9999[~]9999; 自由设定小数点(FW1 和 FW2 为符号扩展, 当超过-1999 时, FW*灯亮, 表示负号)
- 6. 显示: 0.56 英寸高亮度 LED 数码
- 7. 报警输出: 可选单点、上下限、上上限、下下限、区域外报警、区域内报警
- 8. 开关量输出:继电器触点 0.6A(220VAC)、2A(30VDC)
- 9. 模拟量输出: 0⁵V、1⁵V、0¹0mA、4²0 mA 可选
- 10. 通讯接口: 标准串行 RS-485 双向接口、多机地址编码 0~10
- 11. 通讯波特率: 1200、2400、4800、9600、19200bps 任意设定
- 12. 消耗功率: 小于 5 VA
- 13. 使用温度: 0~50℃
- 14. 电源: 220V50Hz
- 15. 外形尺寸: 80H × 160L × 135D 标准插装机箱 152x76 开孔

二、操作面板说明

■ 操作面板各部分功能简要说明:

1. 测量值显示窗口

- a) 左测量显示窗口:显示左路输入信号的测量值四位显示
- b) 左测量显示窗口:显示左路输入信号的测量值四位显示
- 2. 左、右路显示单位: Kg、T、MPa 等(可选) ----计量单位(用户订货时说明)
- 3. AL1----报警继电器指示(亮:吸合;灭:断开),见报警方式设定
- 4. AL2----报警继电器指示(亮: 吸合; 灭: 断开),见报警方式设定
- 5. AL3----报警继电器指示 (亮: 吸合; 灭: 断开), 见报警方式设定
- 6. AL4----报警继电器指示(亮: 吸合; 灭: 断开),见报警方式设定
- 7. FW1----左预警指示灯; FW2----右预警指示灯。当测量值达到或超过设定的预警值时, 相应的预警指示灯亮,否则则熄灭
- 8. SET----设置键
- 9. CLR----用于移位操作。
- 10. △----设定值增加键。
- 11. ▽----设定值减少键。

三、安装与连线

- 1. 本仪器采用标准卡入式结构,请将仪器轻轻推表盘即可。
- 2. 端子连接:

仪表在使用前请按图 2 所示进行正确连线, 左输入对应左路传感器 1#输入信号, 右输入对应 右路传感器 2#输入信号, 两路传感器共用电源; 仪表的电源为 220VAC, 为提高输入电源的质量, 请交流 220V 电源电缆的屏蔽地接到第 13 接线端子 (FG)。

四、操作说明

仪表在正常工作前须对参数进行正确设置和校准,否则仪表有可能不能正常工作,客户在订 货时如果明确了具体要求,则参数可以不用修改,仪表出厂时已经对参数进行了设置并对仪表进 行了校准,客户可直接使用仪表。

■ 参数设置

按照图将电源和传感器正确连接后,给仪表上电。仪器上电后经自检,显示(8.8.8.8.8.8.8.8.8)后进 入正常检测状态。

在测量状态下,轻点一下 SET 键	,窗口1显示LOC,窗口2显示00;通过	
使窗口2显示密码08(一级密码)	后,再按一下 键即可进入各通道	参数设置

■ 各通道参数设置:

01: 通道1参数设置

此时窗口 1 显示 PSD1, 窗口 2 显示 00, 通过 ▲ 键和 ▼ 键, 使窗口 2 显示密码 01 (二 级密码)后,再按一下 SET 键即可进入通道 1 参数设置状态。如果二级密码输入错误,则会进 入通道 2 的二级密码输入状态(见序号 02 说明)。

01-1: 通道1 检测模式选择

此时窗口1显示 TP-1,窗口2显示L(默认值),通过 △ 键和 ▽ 键,可以选择通道1 的检测模式。如果窗口2显示L,则表示检测模式为"连续检测",如果窗口2显示F,则表示检 测模式为"峰值检测"。选择好检测模式后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-2: 通道1小数点位置设置

此时窗口1显示 DP-1,窗口2显示-----(默认值),通过 🛆 键和 💙 键,可以移动通道 1 小数点的位置。设置完小数点位置后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-3: 通道1 开机自动清零功能选择

此时窗口1显示 CT-1,窗口2显示 OFF(默认值),通过 2键和 键,可以选择是 否开启"开机自动清零"功能。如果窗口2显示 OFF,则表示关闭开机自动清零功能,如果窗口 2显示 ON,则表示开启开机自动清零功能。再按一下 SET 键即可进入通道1的下一项参数设置。

01-4: 通道1 滤波次数设置

此时窗口1显示 FLT1,窗口3显示 0 (默认值),通过 △ 键和 ♥ 键,可以设置通道 1 的滤波次数 (0~6)。滤波次数越高,则显示值越稳定,但显示刷新时间也会越长。选择好滤波 次数后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-5: 通道1报警模式选择

此时窗口 1 显示 AP-1 窗口 2 显示 HLN (默认值),通过 ▲ 键和 ▼ 键,可以 选择通道 1 的报警模式。

HLN ——区域内报警; HLW ——区域外报警; L ——下限报警; H——上限报警 n—— 不报警

选择好报警 NO 模式后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-6: 通道1 分度值选择

此时窗口1显示 RSO1,窗口2显示1(默认值),通过 △ 键和 ▽ 键,可以选择通道 1的分度值(1、2、5、10、20、50)。设置完成后,再按一下 SET 键即可进入通道1的下一项 参数设置。

01-7: 通道1 极性选择

此时窗口1显示 SJ1,窗口2显示 DBLE(设定值,默认值为 SGLE),通过 ²键和 ²键和 ²键,可以选择通道的极性 SGLE 为单极性, DBLE 为双极性,再按一下 SET 键即可进入通道 1

的下一项参数设置

01-8: 通道1 放大倍数选择

此时窗口1显示 GN-1,窗口2显示 128 (默认值),通过 △ 键和 ▽ 键,可以选择通 道的放大倍数 (1、2、64、128 四种可选),再按一下 SET 键即可进入通道1的下一项参数设置 01-9:通道1回差值选择

此时窗口 1 显示 FAL1,窗口 2 显示 0010 (默认值),通过 △ 键和 ▽ 键,可以选择 通道 1 的分度值 (10~19)。设置完成后,再按一下 SET 键即可进入通道 1 的下一项参数设置。

01-10: 通道1 上限报警值设置

此时窗口1显示 ALH1,窗口2显示 0600(默认值),通过 键可以改变闪烁位的位置, 通过 键和 键可以改变闪烁位的数值大小。设置完成后,再按一下 SET 键即可进入 通道1的下一项参数设置。

01-11: 通道1 下限报警值设置

02: 通道2参数设置

时窗口 1 显示 **TP-2**,窗口 2 显示 L,通过 △ 键和 ▽ 键,使窗口 2 显示密码 **02**(二 级密码)后,再按一下 **SET** 键即可进入通道 2 参数设置状态。如果二级密码输入错误,则会跳出该状态。

通道2的参数设置方法与通道1类似,不再累述。

序号	设置项	窗口1显示	窗口2默认显示	密码	密码等级
1	基本参数设置	Loc	00	08	一级密码
2	通道1	PSD1	00	01	二级密码
3	通道 2	PSD 2	00	02	二级密码
4	通信参数(全体系统 参数)设置	Loc	00	10	一级密码
5	模拟量输出参数设 置	LOC	00	18	一级密码
6	零点、满度校准	Loc	00	28	一级密码
7	所有通道基本参数 恢复默认值	loc	00	48	一级密码
8	通道1校准参数恢复 默认值	Loc	00	61	一级密码
9	通道2校准参数恢复 默认值	Loc	00	62	一级密码
10	所有通道校准参数 恢复默认值	Loc	00	66	一级密码

表1 参数设置密码速查表

表 2 基本参数设置项速查表

序号	设置基本参数项	窗口1显示	窗口2显示(默认值)
01-1	通道1检测模式	typE	L
01-2	通道1小数点位置	DIP	
01-3	通道1开机自动清零	cut	oFF
01-4	通道1滤波次数	damp	0
01-5	通道1报警模式	alp	Н
01-6	通道1分度值	rESo	1
01-7	通道1回差值	FAL	0010
01-8	通道1上限报警值	ALH1	0600
01-9	通道1下限报警值	ALL1	0300
02-1	通道2检测模式	ТурЕ	L
02-2	通道2小数点位置	DIP	
02-3	通道2开机自动清零	cut	OFF
02-4	通道2滤波次数	damp	0
02-5	通道2报警模式	alp	Н
02-6	通道2分度值	rES0	1
02-7	通道2回差值	FAL	0010
02-8	通道2上限报警值	ALH2	0600
02-9	通道2下限报警值	ALL2	0300

■ 通信设置

在测量状态下,轻点一下 SET 键,窗口1显示 L0c,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 10(通信密码)后,再按一下 SET 键即可进入通信参数设置状态。如果密码输入错误,则会回到测量状态。

01: 通信方式设置

此时窗口 1 显示 **c0MM**,窗口 2 显示 **rdtD**(默认),通过 信方式 (rdtd、td、no)。设置完成后,再按一下 **SET** 键即可进入下一项通信参数设置状态。

rdtd —— 主从模式; td —— 连续发送模式; no —— 无通信模式

02: 通信地址设置

此时窗口1显示 Addr,窗口2显示 01 (默认),通过 △ 键和 ▽ 键,可以设置通信地址 (01~99)。设置完成后,再按一下 SET 键即可进入下一项通信参数设置状态。

03: 通信波特率设置

此时窗口1显示 baud,窗口2显示 9600 (默认),通过 △ 键和 ▽ 键,可以设置通信 波特率 (2400、4800、9600、19200、38400)。设置完成后,再按一下 SET 键即可退出通信参数 设置状态。

表 3 通信参数设置项速查表

序号	设置基本参数项	窗口1显示	窗口2显示(默认值)
1	通信方式设置	comm	rdtd
2	通信地址设置	Addr	01
3	通信波特率设置	baud	9600

04: 报警声音选择

OFF:报警音关闭; oN:报警音打开

05:仪表显示亮度选择

左边窗口显示 **BRgT**,右边窗口显示 **3**(默认 0-4 可选) 06:仪表采集速度选择

左边窗口显示 SPD 右边窗口显示 FAST(快速)通过 键,可以设置 采集速度(FAST SLOW)。设置完成后,再按一下 <mark>SET</mark> 键即可退出参数设置状态。

■ 零点和满度校验<mark>(禁止私自操作,如有需求请联系厂家)</mark>

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 28 (校准密码)后,再按一下 SET 键即可进入零点校准和满度校准状态。如果密码输入错误,则会回到测量状态。

校准项定义:

01: 零点校准(通道1)

窗口1显示 c-L1,窗口2显示 9,通过 △ 键和 ▽ 键可以修改数值大小。如果将窗口 2 的数值调整为 0,则进行通道 1 零点校准操作(校准完成后,显示值变成 0000),否则不对通道 1 零点校准。设置完成后,按一下 SET 键,进入下一项校准设置。

02: 满度校准(通道1)

窗口1显示 **c-H1**,窗口2显示当前校准系数(默认 **1.000**)。通过 CRL 键可以改变数字的闪烁 位,通过 △ 键和 ▽ 键,可以改变闪烁位的数字大小。校准系数的设置范围 0.001~9.999。 设置完成后,按一下 SET 键,进入下一项校准设置。

例如:当前通道1显示值为300,并且校准系数为1.000。现在需要将显示值校准到600,则 只需要把校准系数设置为2.000即可。

计算公式:新校准系数 = 需要显示值 ÷ 当前显示值 × 当前校准系数。

03: 零点校准(通道2)

窗口1显示 c-L2,窗口2显示 9,通过 △ 键和 ▽ 键可以修改数值大小。如果将窗口 2 的数值调整为 0,则进行通道 2 零点校准操作(校准完成后,显示值变成 0000),否则不对通道 2 零点校准。设置完成后,按一下 SET 键,进入下一项校准设置。

04: 满度校准(通道2)

窗口1显示 **c-H2**,窗口2显示当前校准系数(默认 **1.000**)。通过 键可以改变数字的 闪烁位,通过 健和 ↓ 健,可以改变闪烁位的数字大小。校准系数的设置范围 0.001~

9.999。设置完成后,按一下 SET 键,进入下一项校准设置。

例如:当前通道 2 显示值为 300,并且校准系数为 1.000。现在需要将显示值校准到 600,则 只需要把校准系数设置为 2.000 即可。

计算公式:新校准系数 = 需要显示值 ÷ 当前显示值 × 当前校准系数。

表 4 校准项速查表

序号	校准项	窗口1显示	窗口2显示(默认值)
01	通道1零点校准	c-l1	9
02	通道1满度校准	c-h1	1.000
03	通道2零点校准	c-12	9
04	通道2满度校准	c-h2	1.000

■ 显示清零

在测量状态下,可以按相应的组合按钮,达到显示清零的效果。*注意:显示清零在仪表断电* 后失效,如需断电后仍保持清零效果,应进行零点校准操作。

01、通道1显示清零: 键,然后在3秒之内再按 在测量状态下,先按一下 键,即可对通道1进 行显示清零操作。(显示清零操作后,通道1显示0000)。 02、通道2显示清零: 键,然后在3秒之内再按 键,即可对通道2进 在测量状态下,先按一下 行显示清零操作。(显示清零操作后,通道2显示0000)。 ■ 恢复出厂默认参数 禁止私自操作。 口女 01: 所有通道基本参数恢复默认值 在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 键和 键, 使窗口2显示密码48(所有通道基本参数恢复默认值密码后,

再按一下 SET 键即可恢复所有通道基本参数默认值。如果密码输入错误,则会回到测量状态。 02:通道 1 校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ▼ 键, 使窗口2显示密码 61 (通道1校准参数恢复默认值密码)后,

再按一下 SET 键即可恢复通道 1 校准参数。如果密码输入错误,则会回到测量状态。

03:通道2校准参数恢复默认值 在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ▼ 键,使窗口2显示密码 62(通道2校准参数恢复默认值密码)后再按一下 SET 键即可恢复通道 2 校准参数。如果密码输入错误,则会回到测量状态。

04: 所有通道校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ▼ 键, 使窗口2显示密码 66 (所有通道校准参数恢复默认值密码)后,再按一下 SET 键即可恢复 所有通道校准参数。如果密码输入错误,则会回到测量状态。

表 5	恢复默	认参数项速查表

序号	恢复项	窗口1显示	窗口2默认显示	密码	密码等级
01	所有通道基本参数 恢复默认值	loc	00	48	一级密码
02	通道1校准参数恢复 默认值	Loc	00	61	一级密码
03	通道2校准参数恢复 默认值	Loc	00	62	一级密码
06	所有通道校准参数 恢复默认值	Loc	00	66	一级密码

五、通讯协议(此功能需特殊要求)

仪表提供两种通信方式:连续方式(Td)和主从方式(RdTd)。不需要通信功能时将通信参数中的通信方式设为 no.。

1、连续方式(Td)

注意:此通信方式下,无须上位机发送数据,仪表直接从串口连续不断向外发送数据。

(1) 串口通信数据格式: 1 位起始位 + 8 位数据位 + 2 位 CRC 校验(无校验位,一位停止 位)

(2) 波特率:可设(2400-38400),建议9600及以上的波特率

(3) 串口设置举例(如波特率为 9600): 9600, 8, N, 1

(4) 数据帧格式:

地址	功能码 03	1#荷重数据 (PY1) (有符号整形)		2#荷重数据 (PY2) (有符号整 形)		1#小数 点位置 (PY1)	2#小数 点位置 (PY2)	CRO	C校验
仪表地址	03	Data1(高)	Data 1(低)	Data 2(高)	Data 2 (低)	1#小数 点位置	2#小数 点位置	CRC低8 位	CRC 高 8 位

表 6 连续通信方式数据帧格式

2、主从方式(RdTd)

注意:此通信方式下,属于标准的 MODBUS 通信协议。

(1) 通讯协议:标准 MODBUS 协议, RTU 方式

(2) 串口通信数据格式:1位起始位+8 位数据位 +2 位校验位(无校验位,一位停止位)

(3) 波特率:可设(4800-38400),建议 9600 及以上的波特率

(4) 串口设置举例(如波特率为 9600): 9600, 8, N, 1

(5) 数据帧格式:

a. 主机向从机发送读数据指令:

地址	功能	寄存器地 址 高8位	寄存器地 址 低 8 位	数据长度 高8位	数据长度 低8位	CRC 低 8 位	CRC 高8位
仪表地 址	03	00	00	00	02	CRC 低 8 位	CRC 高 8 位

表7 主从通信方式主机向从机发送数据帧格式

b. 从机向主机发送数据:

表 8 主从通信方式从机向主机发送数据帧格式

地址	功 能 03	数据长度	1#荷重 (PY) (有符号	1#荷重数据 2#荷重 (PY1) (PY (有符号整形) (有符 形 円		2#荷重数据 1#小数 (PY2) 点位置 (有符号整 (PY1) 形)		2#小数 点位置 (PY2)	CRC	CRC 校验	
仪表地址	03	4	Data1(高)	Data 1(低)	Data 2(高)	Data 2 (低)	1#小 数 点位置	2#小数 点位置	CRC 低位	CRC 位	高

备注:数据以字节(byte)为单位

六、模拟量输出参数(菜单: AOUT; 密码: 18)(此功能需特殊要求)

左窗口	右窗口	内容	取值范围及功能	说明
AOUT	-1-	1#模拟量输出		左路模拟量
AOT1	12±8	输出类型选择	4.20: 4~20mA; 12.8: 12±8mA; 0-5: 0-5V; 5: ±5V	类型选择
AOF1	2000	模拟量对应量程	0-9999	20mA 对应调整
C-21	0095	模拟量输出低位校准	0-999	4mA 对应输出调整
C-F1	0451	模拟量输出高位校准	0-999	20mA 对应调整 20mA 对应调整
AOUT	-2-	1#模拟量输出		右路模拟量
AOT-2	12±8	输出类型选择	Y. 20: 4~20mA; I2.8: 12±8mA; O-5: 0-5V; Ξ5: ±5V	类型选择
AOF2	2000	模拟量对应量程	0-99999	20mA 对应调整
C-22	0095	模拟量输出低位校准	0-999	4mA 对应输出调整
C-F2	0451	模拟量输出高位校准	0-999	20mA 对应调整 20mA 对应调整

6.1 模拟量输出参数说明

- ▶ 模拟量输出类型 Aot1: 根据需要设置合适的模拟量输出类型;
- ▶ 模拟量输出低位 C-21:模拟量输出低位对应的显示测量值,如 0-5V,如设置模拟量输出低位为 100,则当显示值为 100 时,模拟量输出为 0V;
- ▶ 模拟量输出高位 C-F1: 模拟量输出高位对应的显示测量值,如 0-5V,如设置模拟量输出高位为 10000,则当显示值为 10000 时,模拟量输出为 5V;

- ▶ 模拟量输出低位校准 C-21: 当模拟量输出低位输出不正确时,可通过修改该值进行模拟量输出低位校准;
- ▶ 模拟量输出高位校准 C-F1: 当模拟量输出高位输出不正确时,可通过修改该值进行模拟量输出高位校准;

八、注意和维护事项

1、传感器输入导线不宜过长,使用屏蔽线较好。

2、产品出厂前已经标定校准,如果在长期使用后测量值有偏差,请 按上述方法进行

仪表校准。

3、适用环境温度-40~+70℃ 湿度: ≤95%(RH40℃)以下使用。

4、使用时应远离干扰源,防止强烈震动及冲击,防止大量灰尘以及 有害化学品侵入。

5、仪器长期使用应定期向生产厂家或有关计量部门进行检定校准。