Measurement & Control Instrument

MCK-F型 高精度智能显示控制仪 使用说明书

MC 皖字 03000023

- 性能稳定、可靠;测量准确、直观;传感器非线性补偿功能
- 与各种具有线性输出特性的传感器配套
- 多种报警方式选择、继电器控制输出
- 自动/手动清零、掉电记忆功能
- RS485 半双工/RS232 全双工串行接口 (此功能订货时需要说明)
- 输入电源 220V/50Hz 或 24VDC
- 外形尺寸(长×宽×高) 160mm×80mm×160mm 标准插装机箱,开孔 152X76mm

一、概述

MCK-F 型智能显示测控仪是用于在生产过程中测量、显示和控制纱线张力的智能型 仪表。本仪表内部采用高精度 A/D 转换电路,有自动除皮、上下限声光报警和掉电记忆功能.各种预置数据在掉电后永久保存,并配有 RS485 通信接口 (Modbus 通信协议)。

二、技术指标:

- 1、显示范围: -1999 ~ 9999
- 2、精 度: ±0.1%F•S
- 3、输入信号: mV 信号
- 4、输出信号: RS485 半双工/RS232 全双工串行输出(Modbus 通信协议)
- 5、报警保护: 上下限声光报警
- 6、工作环境:温度:-40~+70℃ 湿度:≤95% (RH40℃)
- 7、工作电压: AC220V±10% 50HZ/24V 1A DC
- 8、机箱尺寸(开口尺寸): 高80×宽160×深160(高76×宽152)(mm)

图 1 仪表面板示意图

1、参数设置

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 08(一级密码)后,再按一下 SET 键即可进入各通道参数设 置状态。如果密码输入错误,则会回到测量状态。

■ 各通道参数设置:

01: 通道1参数设置

此时窗口1显示 PSd1,窗口2显示 00,窗口4显示 cHn1,通过 △ 键和 ∨ 键, 使窗口2显示密码 01 (二级密码)后,再按一下 SET 键即可进入通道1参数设置状态。如 果二级密码输入错误,则会进入通道2的二级密码输入状态(见序号 02 说明)。

01-1:通道1检测模式选择

此时窗口1显示 type,窗口2显示L(默认值),窗口4显示 cHn1,通过 △ 键和 ▽ 键,可以选择通道1的检测模式。如果窗口2显示L,则表示检测模式为"连续检测",如 果窗口2显示F,则表示检测模式为"峰值检测"。选择好检测模式后,再按一下 SET 键即 可进入通道1的下一项参数设置。

01-2: 通道1小数点位置设置

此时窗口1显示 DIP, 窗口2显示---.-(默认值), 窗口4显示 cHn1, 通过 △ 键和 ♥ 键, 可以移动通道 1 小数点的位置。设置完小数点位置后, 再按一下 SET 键即可进 入通道1的下一项参数设置。

01-3: 通道1开机自动清零功能选择

此时窗口1显示 cut,窗口2显示 oFF(默认值),窗口4显示 cHn1,通过 △ 键和 ∨ 键,可以选择是否开启"开机自动清零"功能。如果窗口2显示 oFF,则表示关闭开机自动 清零功能,如果窗口2显示 on,则表示开启开机自动清零功能。再按一下 SET 键即可进入 通道 1 的下一项参数设置。

01-4: 通道1 滤波次数设置

此时窗口1显示 dAmp,窗口2显示0(默认值),窗口4显示 cHn1,通过 △ 键和 ▽ 键,可以设置通道1的滤波次数(0~4)。滤波次数越高,则显示值越稳定,但显示刷新时间也会越长。选择好滤波次数后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-5: 通道1报警模式选择

此时窗口1显示 ALP,窗口2显示 no (默认值),窗口4显示 cHn1,通过 △ 键和 ▽ 键, 可以选择通道1的报警模式。

No ——不报警; H ——上限报警; L ——下限报警; HH ——上上限报警 HL ——上下限报警; LL ——下下限报警;

选择好报警模式后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-6: 通道1分度值选择

此时窗口1显示 reSo,窗口2显示1(默认值),窗口4显示 cHn1,通过 △ 键和 ▽ 键,可以选择通道1的分度值(1、2、5、10、20、50)。设置完成后,再按一下 SET 键即可进入通道1的下一项参数设置。

01-7: 通道1回差值选择

此时窗口1显示 FAL,窗口2显示 0010 (默认值),窗口4显示 cHn1,通过 △ 键和 ♥键,可以选择通道1的分度值 (10~19)。设置完成后,再按一下 SET 键即可进入通 道1的下一项参数设置。

01-8:通道1上限报警值设置

此时窗口1显示 ALH1,窗口2显示 0600 (默认值),窗口4显示 cHn1,通过 键 可以改变闪烁位的位置,通过 ▲ 键和 ▼ 键可以改变闪烁位的数值大小。设置完成后, 再按一下 SET 键即可进入通道1的下一项参数设置。

01-9:通道1下限报警值设置

此时窗口1显示 ALL1,窗口2显示 0300 (默认值),窗口4显示 cHn1,通过 键 可以改变闪烁位的位置,通过 ▲ 键和 ▼ 键可以改变闪烁位的数值大小。设置完成后, 再按一下 SET 键即可进入通道 2 的参数设置。

02: 通道2参数设置

此时窗口1显示 PSd2,窗口2显示 00,窗口4显示 cHn1,通过 △ 键和 ∨ 键, 使窗口2显示密码 02 (二级密码)后,再按一下 SET 键即可进入通道2参数设置状态。如 果二级密码输入错误,则会进入通道3的二级密码输入状态。

通道 2、3、4 的参数设置方法与通道 1 类似,不再累述。

序 号	设置项	窗口1显 示	窗口2默认显示	窗口4显示	密码	密码等级
1	基本参数设置	Loc	00		08	一级密码
2	通道1	PSD1	00	cHn1	01	二级密码
3	通道 2	PSD 2	00	cHn 2	0 2	二级密码
4	通道 3	PSD 3	00	cHn 3	03	二级密码
5	通道 4	PSD 4	00	cHn 4	04	二级密码
6	通信参数设置	Loc	00		18	一级密码
7	零点、满度校准	Loc	00		28	一级密码
8	所有通道基本参 数恢复默认值	loc	00		48	一级密码
9	通道1校准参数 恢复默认值	Loc	00		61	一级密码
10	通道1校准参数 恢复默认值	Loc	00		62	一级密码
11	通道1校准参数 恢复默认值	Loc	00		63	一级密码
12	通道1校准参数 恢复默认值	Loc	00		64	一级密码

表1 参数设置密码速查表

MCK-F 型智能显示测控仪

系统使用说明书

13	所有通道校准参 数恢复默认值	Loc	00		66	一级密码
----	-------------------	-----	----	--	----	------

序号	设置基本参数项	窗口1显示	窗口2显示(默认值)	窗口4显示
01-1	通道1检测模式	typE	L	cHn1
01-2	通道1小数点位置	DIP		cHn1
01-3	通道1开机自动清零	cut	oFF	cHn1
01-4	通道1滤波次数	damp	0	cHn1
01-5	通道1报警模式	alp	Н	cHn1
01-6	通道1分度值	rESo	1	cHn1
01-7	通道1回差值	FAL	0010	cHn1
01-8	通道1上限报警值	ALH1	0600	cHn1
01-9	通道1下限报警值	ALL1	0300	cHn1
02-1	通道2检测模式	typE	L	cHn 2
02-2	通道2小数点位置	DIP		cHn 2
02-3	通道2开机自动清零	cut	oFF	cHn 2
02-4	通道2滤波次数	damp	0	cHn 2
02-5	通道2报警模式	alp	Н	cHn 2
02-6	通道2分度值	rESo	1	cHn 2
02-7	通道2回差值	FAL	0010	cHn 2
02-8	通道 2 上限报警值	ALH2	0600	cHn 2
02-9	通道2下限报警值	ALL2	0300	cHn 2
03-1	通道3检测模式	typE	L	cHn 3
03-2	通道3小数点位置	DIP		cHn 3
03-3	通道3开机自动清零	cut	oFF	cHn 3
03-4	通道3滤波次数	damp	0	cHn 3
03-5	通道3报警模式	alp	Н	cHn 3
03-6	通道3分度值	rESo	1	cHn 3
03-7	通道3回差值	FAL	0010	cHn 3
03-8	通道3上限报警值	ALH3	0600	cHn 3
03-9	通道3下限报警值	ALL3	0300	cHn 3
04-1	通道4检测模式	typE	L	cHn 4
04-2	通道 4 小数点位置	DIP		cHn 4
04-3	通道4开机自动清零	cut	oFF	cHn 4
04-4	通道4滤波次数	damp	0	cHn 4
04-5	通道4报警模式	alp	Н	cHn 4
04-6	通道4分度值	rESo	1	cHn 4
04-7	通道4回差值	FAL	0010	cHn 4
04-8	通道4上限报警值	ALH4	0600	cHn 4
04-9	通道4下限报警值	ALL4	0300	cHn 4

表 2 基本参数设置项速查表

2、通信设置(此功能订货时需要说明)

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥键,使窗口2显示密码 18 (通信密码)后,再按一下 SET 键即可进入通信参数设置 状态。如果密码输入错误,则会回到测量状态。

01:通信方式设置

此时窗口1显示 coMM,窗口2显示 rdtd(默认),窗口4显示-rs-,通过 △ 键和 ▽ 键,可以选择通信方式 (rdtd、td、no)。设置完成后,再按一下 SET 键即可进入下一项 通信参数设置状态。

rdtd —— 主从模式; td —— 连续发送模式; no —— 无通信模式

02:通信地址设置

此时窗口1显示 Addr,窗口2显示01(默认),窗口4显示-rs-,通过 △ 键和 ▽ 键,可以设置通信地址(01~99)。设置完成后,再按一下 SET 键即可进入下一项通信参 数设置状态。

03:通信波特率设置

此时窗口1显示 baud,窗口2显示 9600(默认),窗口4显示-rs-,通过 △ 键和 ▼ 键,可以设置通信波特率(2400、4800、9600、19200、38400)。设置完成后,再按一下 SET 键即可退出通信参数设置状态。

序号	设置基本参数项	窗口1显示	窗口2显示(默认值)	窗口4显示
1	通信方式设置	comm	rdtd	-rs-
2	通信地址设置	Addr	01	-rs-
3	通信波特率设置	baud	9600	-rs-

表 3 通信参数设置项速查表

3、零点和满度校验(禁止私自操作,如有疑问请联系厂家)

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码28(校准密码)后,再按一下 SET 键即可进入零点校准和满 度校准状态。如果密码输入错误,则会回到测量状态。

校准项定义:

01: 零点校准(通道1)

窗口1显示 c-L1,窗口2显示9,窗口4显示 cal1。通过 △ 键和 ▽ 键可以修改数值大小。如果将窗口2的数值调整为0,则进行通道1零点校准操作(校准完成后,显示 值变成 0000),否则不对通道1零点校准。设置完成后,按一下 SET 键,进入下一项校准

设置。

02: 满度校准(诵道1)

窗口1显示 c-H1,窗口2显示当前校准系数(默认1.000),窗口4显示 cal1。通过 键可以改变数字的闪烁位,通过 △ 键和 ▽ 键,可以改变闪烁位的数字大小。校准系 数的设置范围 0.001~9.999。设置完成后,按一下 SET 键,进入下一项校准设置。

例如:当前通道1显示值为300,并且校准系数为1.000。现在需要将显示值校准到600,则只需要把校准系数设置为2.000即可。

计算公式: 新校准系数 = 需要显示值 ÷ 当前显示值 × 当前校准系数。

03: 零点校准(通道2)

窗口1显示 c-L2,窗口2显示9,窗口4显示 cal2。通过 △ 键和 ∨ 键可以修改 数值大小。如果将窗口2的数值调整为0,则进行通道2零点校准操作(校准完成后,显示 值变成0000),否则不对通道2零点校准。设置完成后,按一下 SET 键,进入下一项校准 设置。

04: 满度校准(通道2)

窗口1显示 c-H2,窗口2显示当前校准系数(默认1.000),窗口4显示 cal2。通过 键可以改变数字的闪烁位,通过 △ 键和 ▽ 键,可以改变闪烁位的数字大小。校准系 数的设置范围 0.001~9.999。设置完成后,按一下 SET 键,进入下一项校准设置。

例如:当前通道 2 显示值为 300,并且校准系数为 1.000。现在需要将显示值校准到 600,则只需要把校准系数设置为 2.000 即可。

计算公式:新校准系数 = 需要显示值 ÷ 当前显示值 × 当前校准系数。

05:零点校准(通道3)

窗口1显示 c-L3,窗口2显示9,窗口4显示 cal3。通过 △ 键和 ∨ 键可以修改数值大小。如果将窗口2的数值调整为0,则进行通道3零点校准操作(校准完成后,显示 值变成 0000),否则不对通道3零点校准。设置完成后,按一下 SET 键,进入下一项校准 设置。

06: 满度校准(通道3)

例如:当前通道3显示值为300,并且校准系数为1.000。现在需要将显示值校准到600,则只需要把校准系数设置为2.000即可。

计算公式:新校准系数 = 需要显示值 ÷ 当前显示值 × 当前校准系数。

07: 零点校准(通道4)

窗口1显示 c-L4,窗口2显示9,窗口4显示 cal4。通过 △ 键和 ▽ 键可以修改 数值大小。如果将窗口2的数值调整为0,则进行通道4零点校准操作(校准完成后,显示 值变成0000),否则不对通道4零点校准。设置完成后,按一下 SFT 键,进入下一项校准 设置。

08: 满度校准(通道4)

例如:当前通道4显示值为300,并且校准系数为1.000。现在需要将显示值校准到600,则只需要把校准系数设置为2.000即可。

计算公式:新校准系数 = 需要显示值 ÷ 当前显示值 × 当前校准系数。

序 号	校准项	窗口1显示	窗口4显示	窗口2显示(默认值)
01	通道1零点校准	c-11	Cal1	9
02	通道1满度校准	c-h1	Cal1	1.000
03	通道2零点校准	c-12	Cal 2	9
04	通道2满度校准	c-h 2	Cal 2	1.000
05	通道3零点校准	c-13	Cal 3	9
06	通道3满度校准	c-h 3	Cal 3	1.000
07	通道4零点校准	c-14	Cal 4	9
08	通道4满度校准	c-h 4	Cal 4	1.000

表 4 校准项速查表

<mark>4、显示清零</mark>

在测量状态下,可以按相应的组合按钮,达到显示清零的效果。注意:显示清零在 仪表断电后失效,如需断电后仍保持清零效果,应进行零点校准操作。

01、通道1显示清零:

在测量状态下,先按一下 健,然后在3秒之内再按一下 SET 键,即可对通道1进行显示清零操作。(显示清零操作后,通道1显示 0000)。

02、通道2显示清零:

在测量状态下,先按一下 健,然后在3秒之内再按一下 △ 键,即可对通道2 进行显示清零操作。(显示清零操作后,通道2显示 0000)。

03、通道3显示清零:

在测量状态下,先按一下 键,然后在3秒之内再按一下 键,即可对通道3进行显示清零操作。(显示清零操作后,通道3显示0000)。

04、通道4显示清零:

5、恢复出厂默认参数(禁止私自操作,如有疑问请联系厂家)

01: 所有通道基本参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 48 (所有通道基本参数恢复默认值密码)后,再按一下 SET 键 即可恢复所有通道基本参数默认值。如果密码输入错误,则会回到测量状态。

02: 通道1 校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 61 (通道1校准参数恢复默认值密码)后,再按一下 SET 键 即可恢复通道1校准参数。如果密码输入错误,则会回到测量状态。

03: 通道2校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥键,使窗口2显示密码 62(通道2校准参数恢复默认值密码)后,再按一下 SET 键 即可恢复通道2校准参数。如果密码输入错误,则会回到测量状态。

04: 通道3 校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ▼键,使窗口2显示密码 63(通道3校准参数恢复默认值密码)后,再按一下 SET 键 即可恢复通道3校准参数。如果密码输入错误,则会回到测量状态。

05: 通道4校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 64(通道4校准参数恢复默认值密码)后,再按一下 SET 键 即可恢复通道4校准参数。如果密码输入错误,则会回到测量状态。

06: 所有通道校准参数恢复默认值

在测量状态下,轻点一下 SET 键,窗口1显示 Loc,窗口2显示 00;通过 △ 键和 ♥ 键,使窗口2显示密码 66 (所有通道校准参数恢复默认值密码)后,再按一下 SET 键 即可恢复所有通道校准参数。如果密码输入错误,则会回到测量状态。

序 号	恢复项	窗口1显 示	窗口2默认显示	密码	密码等级
01	所有通道基本参 数恢复默认值	loc	00	48	一级密码
02	通道1校准参数 恢复默认值	Loc	00	61	一级密码
03	通道1校准参数 恢复默认值	Loc	00	62	一级密码
04	通道1校准参数 恢复默认值	Loc	00	63	一级密码
05	通道1校准参数 恢复默认值	Loc	00	64	一级密码
06	所有通道校准参 数恢复默认值	Loc	00	66	一级密码

表 5 恢复默认参数项速查表

四、通讯协议 (此功能订货时需要说明)

仪表提供两种通信方式:连续方式(Td)和主从方式(RdTd)。

1、连续方式(Td)

注意:此通信方式下,无须上位机发送数据,仪表直接从串口连续不断向外发送数据。

(1) 串口通信数据格式: 1 位起始位 + 8 位数据位 + 2 位停止位(无校验位,一位停止位;

(2) 波特率:可设(2400-38400),建议9600及以上的波特率;

(3) 串口设置举例:通讯格式为9600 8 N 1,地址 1, PV1-PV4 显示值全为 0;

(4) 数据帧格式:

いたんもいマー	<u>~~</u> _	<u> 12 WL</u>	ᆂᅭᆂ	-16-1
-4-4		T 750	ᄄᄄᆘᇠ	
1十 6 元 11日		C\ #7V *	1店11111	1447 T.V
	1 1 1 1 1	ドップス・	ハロ・アン・	N H 2V

14.11	功能	寄存器	PV1 高	PV1 低	PV2 高	PV2 低	PV3 高	PV3	PV4	PV4	CRC	CRC
地址	码	低位	位	位	位	位	位	低位	高位	低位	高位	低位
01	03	08	00	00	00	00	00	00	00	00	95	D7

CRC 低位

09

CRC

2、主从方式(RdTd)

注意:此通信方式下,属于标准的 MODBUS 协议;

(1) 通讯协议:标准 MODBUS 协议, RTU 方式;

(2) 串口通信数据格式: 1 位起始位 + 8 位数据位 + 2 位停止位(无校验位,一位停止位);

(3) 波特率:可设(4800-38400),建议9600及以上的波特率;

(4) 串口设置举例:通讯格式为9600 8 N 1,地址 1, PV1-PV4 显示值全为 0;

(5) 数据帧格式:

03

	а. <u> </u>	1/61-1///1/6					
			主从通信	方式主机向从	机发送数据	侦格式	
ţ	也址	功能	寄存器地址 高位	寄存器地址 低位	数据长度 高位	数据长度 低位	CRC 高位

00

00

. 主机向从机(MCK-F)发送读取指令:

b. 从机(MCK-F)向主机回传数据格式:

00

主从通信方式从机向主机发送数据帧格式 功能 PV2 高 PV2 低 PV4 CRC 寄存器 PV1 高 PV1 低 PV3 高 PV3 PV4 码 低位 位 位 位 位 位 低位 高位 低位

地址 低位 高位 00 00 95 01 03 08 00 00 00 00 00 00 D7

备注:数据以字节(byte)为单位

04

44

五、外部接线端子

01

图 2 仪表后部接线端子示意图

七、注意和维护事项

1、传感器输入导线不宜过长,使用屏蔽线较好。

2、产品出厂前已经标定校准,如果在长期使用后测量值有偏差,请 按上述方法进行

仪表校准。

3、适用环境温度-40~+70℃ 湿度: ≤95% (RH40℃)以下使用。

4、使用时应远离干扰源,防止强烈震动及冲击,防止大量灰尘以及有害化学品侵入。

5、仪器长期使用应定期向生产厂家或有关计量部门进行检定校准。

附录 1:

用串口进行通讯实图:通讯格式为96008N1,地址1,PV1-PV4随机显示值;

○文本模式 01 03 08 FF 34 FF D8 00 4A FD 04 FB 89	
◎ HEX模式	
清空接收区	
保存接收数据	
。 《发送缓冲区	
◎ 文本模式 01 03 00 00 04 44 09	
◎ HEX模式	
清空发送区	
保存发送数据	
发送文件 发送数据 自动发送 周期 (ms) 100	
串口 C0004 → 波特率 9600 → 検验位 无检验 → 停止位 1位 →	
关闭串口 及広 0 ★闭串口 承辺8/辺7设置为标准USB转串口 接收 13	